

Page 1 of 42

.NET Full Stack Interview

Guide

Doc version – 1.0

Copyright – IntegerByte LLP | StackBytes

Page 2 of 42

Table of content:

1. Introduction

2. .Net and .Net Framework interview questions

3. Solid Principles

4. Design Patterns

5. .Net Core Interview Questions

6. Web API Interview Questions

7. Angular Interview Questions

Page 3 of 42

Introduction:

IntegerByte has become a prominent name in the community of software
programmers and web developers. We have provided our developers with a
platform where they share knowledge and achieve certain goals.

With collaboration with StackBytes, we are helping engineers including freshers and
experience to crack interviews providing basic interview questions, some tips and
tricks to crack interview, best practices to follow.

Our Services:

• Website Design and Development and Mobile Applications (Android and IOS).

• Domain name, Web Hosting and Security Provider (SSL Certificate).

• Logo, Banner and Brochure Designing.

Our website - www.integerbyte.com

Our Blog - www.integerbyteblog.in

Reach out to us on - tointegerbyte@gmail.com OR stackbytes08@gmail.com

Follow our social media for more updates:

http://www.integerbyte.com/
http://www.integerbyteblog.in/
mailto:%20tointegerbyte@gmail.com
mailto:stackbytes08@gmail.com

Page 4 of 42

1. What is .NET & .NET Framework?

• .NET Framework: A software framework by Microsoft for developing and
running applications in a controlled environment.

• .NET: A developer platform to build applications for web, mobile, desktop, and IoT,
supporting multiple languages like C#, F#, and C++.

2. Explain Common Language Runtime (CLR):

• CLR is the runtime environment that manages the execution of .NET programs,
providing services like memory management, security, and exception handling.

3. What is the Global Assembly Cache (GAC)?

• GAC stores DLLs globally to avoid conflicts and make them accessible across multiple
applications.

4. What is Garbage Collection?

• Garbage Collection automatically manages memory by allocating and deallocating it. It
frees memory once an object is no longer needed.

Types:

• Generation 0: Contains the youngest objects.
• Generation 1: Objects not reclaimed in Gen 0 move here.
• Generation 2: Objects that persist for a long time.

Page 5 of 42

5. What is Value Type and Reference Type?

• Value Type: Stored in the stack, directly holds the value.
Example: int i = 10;

• Reference Type: Stored in the heap, holds a reference to the memory address.
Example: string s = "hello world";

6. Difference Between String, StringBuffer, and StringBuilder?

• String: Immutable and fixed length. Modifications create new instances.
• StringBuilder: Mutable with variable length, allows modifications without creating new

instances.
• StringBuffer: Mutable, thread-safe (synchronized), slower than StringBuilder but faster

than String.

7. What is Boxing and Unboxing?

• Boxing: Converts a value type to a reference type.
Example: int i = 10; object o = i;

• Unboxing: Converts a reference type back to a value type.
Example: object o = 12; int i = (int)o;

8. What is the Difference Between .NET and .NET Core?

• .NET: Supports Windows-based applications and is OS-dependent.
• .NET Core: A cross-platform, open-source framework for modern application

development.

9. What is the Difference Between Constant and Read-Only?

• Constant: Value is fixed at compile time and cannot change. It is implicitly static.
• Read-Only: Value is assigned at runtime and can only be changed in the constructor.

Page 6 of 42

10. What is the Difference Between Authentication and Authorization?

• Authentication: Verifies the user's identity and ensures they exist in the system.
• Authorization: Validates what the authenticated user is allowed to access based on

roles or permissions.

Page 7 of 42

SOLID Principles

SOLID principles are a popular set of design guidelines that help developers write readable,
reusable, maintainable, and scalable code. These principles ensure the code is modular, easier
to understand, and less prone to bugs when changes are introduced.

Single Responsibility Principle (SRP)

• A class should have only one reason to change.
• This means each class should focus on a single responsibility, ensuring clarity and

reducing the risk of unintended side effects when modifications are made.

Let’s look at the example

Open-Closed Principle (OCP)

• Classes should be open for extension but closed for modification.

Page 8 of 42

• This allows adding new functionality through method overriding in derived classes
without altering the base class.

• It promotes stability and scalability in object-oriented design.

Let’s look at the example

Liskov Substitution Principle (LSP)

• Objects of a derived class should be able to replace objects of the base class without
altering the correctness of the program.

• Method overriding is a common implementation mechanism used in both the Open-
Closed Principle (OCP) and the Liskov Substitution Principle (LSP), but their purposes and
focuses differ.

Page 9 of 42

• OCP emphasizes extensibility and LSP emphasizes compatibility and substitutability
between base and derived classes.

Let’s look at the example

Interface Segregation Principle (ISP)

• The Interface Segregation Principle states that a client should not be forced to
implement interfaces it does not use.

Let’s look at the example

Page 10 of 42

Dependency Inversion Principle (DIP)

• High-level modules should not depend on low-level modules; both should depend on
abstractions.

• This decouples the system and makes it more flexible, maintainable, and testable.

Page 11 of 42

Page 12 of 42

Design Patterns

Design patterns are reusable and proven solutions to common software design problems.
They help developers create code that is maintainable, scalable, and easy to understand.

Types of Design Patterns:

• Creational Patterns: Deal with object creation.
Examples: Singleton, Factory, Abstract Factory

• Structural Patterns: Focus on the composition of classes and objects.
Examples: Adapter, Facade, Repository

• Behavioral Patterns: Concerned with communication between objects.
Examples: Strategy, Iterator, Unit of Work, CQRS
(CQRS is an architectural pattern combining structural and behavioral aspects.)

Singleton Pattern

• The Singleton Design Pattern ensures that a class has only one instance and provides a
global point of access to that instance.

• It is particularly useful for scenarios where a single shared resource is required, such as:
o Logging
o Caching
o Configuration settings
o Database connections

Let’s look at the example

Page 13 of 42

Page 14 of 42

Factory Design Pattern

• The Factory Design Pattern provides a way to create objects without specifying the
exact class of the object that will be created.

• It is particularly useful when we have multiple classes sharing a common interface but
requiring different implementations.

Let’s look at the example

Scenario

In an Order Management System, consider different types of orders:

• Online Orders
• Store Orders
• Bulk Orders

Each type of order:

• Shares a common interface
• Has a different implementation, such as:

o Processing fees
o Shipping methods
o Notifications

The Factory Pattern can be used to create instances of these order types dynamically based on
the input or context.

Page 15 of 42

Repository Pattern

• The Repository Pattern abstracts the data access logic, acting as a mediator between
the domain/business logic and the data source.

• It provides a consistent interface to perform CRUD operations (Create, Read, Update,
Delete).

• This allows you to switch between SQL, NoSQL, or any data store without affecting
your application’s business logic.

• It is particularly useful in:

Page 16 of 42

o Domain-Driven Design (DDD)
o RESTful APIs

Let’s look at the example

Scenario

In an Order Management System (OMS), we manage orders stored in a database.

Using the Repository Pattern:

• We can abstract the logic for accessing the database.
• This ensures that the business logic (such as creating, fetching, or updating orders)

doesn’t depend on raw database queries or specific technologies.

Page 17 of 42

Page 18 of 42

Unit of Work Pattern

• The Unit of Work pattern helps manage database transactions in a consistent way.
• It groups multiple operations — such as insert, update, and delete — into a single unit

of work.
• If any operation fails, the entire transaction is rolled back, ensuring:

o Data integrity
o Easier testing
o Simpler maintenance

Let’s look at the example

Page 19 of 42

Scenario

In an Order Management System (OMS), when a user places an order, the following steps are
required:

1. Create a new order record
2. Deduct the stock quantity of the ordered items
3. Log the transaction in the audit table

All of these actions:

• Must either succeed together
• Or fail as a group

By using the Unit of Work pattern, we ensure that all related changes are committed in one
transaction, maintaining consistency across the system.

Page 20 of 42

Page 21 of 42

CQRS Pattern (Command Query Responsibility Segregation)

• The CQRS pattern is a design approach that separates read and write operations into
distinct models.

• These are often implemented in different classes or interfaces:
o Command model → For writing data (Create, Update, Delete)
o Query model → For reading data (Read-only operations)

• This separation results in:
o Better scalability
o Improved maintainability
o Optimized performance

Let’s look at the example

Page 22 of 42

Page 23 of 42

.NET Core Interview Questions

1. What is DotNetCore and how it differs from DotNet?

• .NET Core is a cross-platform, open-source framework for building modern applications.
• .NET Framework is Windows-only and platform-dependent.
• .NET Core is:

o Faster
o Supports microservices
o Now unified under .NET 5+ as just ".NET"

2. What is Dependency Injection and explain types?

• Dependency Injection (DI) is a design pattern to manage object dependencies.

Types in .NET Core:

• Constructor Injection: Dependencies are provided through a class’s constructor.
• Property Injection: Dependencies are injected into public properties after instantiation.
• Method Injection: Dependencies are passed as method parameters at runtime.

Let’s look at the example

Page 24 of 42

Page 25 of 42

3. What are the different service lifetime options available in the Dependency
Injection (DI) container?

• AddSingleton: Creates one instance for the application's lifetime.
Example: Logging service

• AddScoped: Creates one instance per HTTP request.
Example: DbContext in APIs

• AddTransient: Creates a new instance every time it's requested.
Example: Lightweight utility services

Code Examples:

csharp
CopyEdit
services.AddSingleton<ILogger, Logger>(); // Shared logger service
services.AddScoped<IDbContext, AppDbContext>(); // Scoped to each API request
services.AddTransient<IUtilityService, UtilityService>(); // Created on each call

4. What is middleware in .NET Core and how to create custom middleware?

• Middleware processes HTTP requests and responses in the request pipeline.
• It can:

o Intercept requests
o Run logic
o Pass to the next middleware

• You can create custom middleware using RequestDelegate.

RequestDelegate: A function that handles HTTP requests and optionally forwards to the next
middleware using await.

5. How to use filters in .NET Core?

• Filters in .NET Core allow you to execute logic before or after controller actions.

Types of Filters:

• Authorization Filter
• Action Filter
• Exception Filter
• Result Filter
• Resource Filter

Page 26 of 42

6. What is Kestrel Server and how it differs from IIS?

• Kestrel:
o A lightweight, cross-platform web server built into .NET Core.
o Handles actual request processing.

• IIS/Nginx:
o Public-facing web servers (often reverse proxies).
o IIS is Windows-specific, while Kestrel is cross-platform.
o Typically, Kestrel is used behind IIS or Nginx for production deployments.

7. Explain the role of Docker and Kubernetes in ASP.NET Core deployment

• Docker:
o Containerizes your app so it runs consistently across environments.
o Includes app + dependencies + runtime.

• Kubernetes (K8s):
o Manages, deploys, and scales containerized applications.
o Features:

▪ Auto-scaling
▪ Load balancing
▪ Self-healing (restarts failed containers)
▪ Service discovery

8. What is Threading? How can we use Async, Await, and Task in ASP.NET Core?

• Threading: Runs multiple tasks simultaneously for better responsiveness.
• Async & Await: Enables non-blocking, asynchronous execution.
• Task: Represents a future operation.

Using Task keeps the app responsive while it waits for I/O or long-running operations to
complete.

Page 27 of 42

9. What is ORM? Give 2 examples

• ORM (Object-Relational Mapping):
o A technique to interact with the database using objects, rather than raw SQL.
o Maps tables to classes and rows to objects.

Examples:

• Entity Framework Core
• Dapper

10. What is the difference between app.Use and app.Run?

• app.Use:
o Adds middleware to the request pipeline.
o Can pass the request to the next middleware using next().

• app.Run:
o Defines a terminal middleware.
o Ends the pipeline — does not forward the request.

Let’s look at the example

Page 28 of 42

Web API Interview Questions

1. What is CORS (Cross-Origin Resource Sharing), and how do we configure it in
ASP.NET Core Web API?

• CORS is a security feature that allows or restricts web applications from making HTTP
requests to a domain different from the one that served the web page.

• By default, browsers block such cross-origin requests for security.

In ASP.NET Core, you can configure CORS in the Startup.cs file to allow requests from specific
origins.

Let’s look at the example

Page 29 of 42

2. What is JWT authentication and how is it securing .NET Core API?

• JWT (JSON Web Token) is a compact, URL-safe token format used to represent claims
between two parties.

• A JWT consists of three parts:
o Header: Contains algorithm and token type.
o Payload: Contains claims (user data, roles, etc.).
o Signature: Used to verify the token’s authenticity and integrity.

• JWT is stateless:
o The server does not store session information.
o The token itself carries all the required data to authenticate and authorize the

user.
• In ASP.NET Core, JWT is used for authentication by:

o Validating the token present in the Authorization header of incoming HTTP
requests.

Let’s look at the example

Page 30 of 42

3. What is RESTful API and explain the difference between HttpPost, HttpPatch,
and HttpPut?

• A RESTful API (Representational State Transfer) is an architectural style used for
building:

o Stateless
o Scalable
o Resource-based web applications

• It uses standard HTTP methods to perform CRUD operations.

HTTP Methods:

• HttpPost
o Used to create a new resource.
o Behavior: Each POST creates a new resource. It is not idempotent (multiple

requests = multiple new entries).
• HttpPut

o Used to replace an existing resource with new data.
o Behavior: If you send the same PUT request multiple times, the result is the

same. It is idempotent. It replaces the entire resource.
• HttpPatch

o Used to partially update an existing resource.
o Behavior: Only the specified fields are updated. The rest of the resource remains

unchanged.

Page 31 of 42

4. What is a Refresh Token and how to implement it in .NET Core?

• A Refresh Token is a long-lived token used to obtain a new Access Token after the
original one has expired.

• It allows users to stay logged in without needing to re-authenticate every time.
• Commonly used with JWT authentication for secure, persistent login sessions.

Let’s look at the example

Page 32 of 42

Page 33 of 42

5. What is Clean Architecture in .NET Core Web API?

• Clean Architecture ensures separation of concerns by organizing the code into layers,
each with its own responsibilities.

• This makes the application more maintainable, testable, and scalable.

Main Layers:

• Presentation Layer (API)
o Handles incoming HTTP requests
o Performs input validation
o Maps requests to DTOs

• DTO Layer
o Contains Data Transfer Objects
o Decouples API contracts from database models

• Service Layer
o Implements business logic and application use cases
o Interacts with the repository and maps entities to DTOs

• Data Layer
o Manages database access using Entity Framework Core
o Contains database entities

Design Patterns Used:

• Repository Pattern:
Encapsulates database operations for entities.

• Unit of Work Pattern:
Manages transactional consistency across multiple repositories.

Page 34 of 42

6. How to handle exceptions and errors in a .NET Core Web API?

• In .NET Core Web API, exceptions and errors can be handled using built-in middleware
such as:

o UseExceptionHandler() – For global exception handling in production.
o UseDeveloperExceptionPage() – For detailed error information during development.

• You can also implement custom error handling by:
o Creating a global exception filter
o Using try-catch blocks inside controllers for local exception handling

Page 35 of 42

7. What is the difference between WCF and Web API?

• WCF (Windows Communication Foundation):
o Provides service-oriented architecture (SOA)
o Supports multiple protocols: HTTP, TCP, MSMQ, etc.
o Offers advanced features: transactions, message queuing, security
o Ideal for enterprise applications needing multi-protocol support

• Web API:
o Lightweight framework for building RESTful services over HTTP
o Communicates using JSON or XML
o Focuses on simplicity, scalability, and modern web/mobile applications
o Supports only HTTP/HTTPS

8. How do we implement response caching in a Web API?

• Use the [ResponseCache] attribute in your controller actions to define caching behavior.

Settings you can define:

• Duration: Time in seconds to cache the response
• Location: Client or server-side
• NoStore: Whether to store the response

Steps to enable:

1. Configure caching in Startup.cs using AddResponseCaching()
2. Apply the [ResponseCache] attribute to relevant controller actions

Page 36 of 42

9. What are ways to optimize a .NET Core Web API for high performance?

• Enable Response Caching to store and serve frequently accessed data, reducing
redundant processing.

• Use Asynchronous Programming to handle multiple requests concurrently, improving
scalability and responsiveness.

• Minimize Middleware to streamline request processing by eliminating unnecessary
components.

• Optimize Database Queries using techniques like lazy loading, eager loading, or stored
procedures to enhance data retrieval efficiency.

• Implement Connection Pooling to reuse database connections, lowering connection
overhead and boosting performance.

10. Explain the difference between IActionResult and Task<IActionResult>?

• IActionResult is a synchronous return type that indicates the outcome of an action, such
as Ok(), BadRequest(), or NotFound().

• It provides a result immediately after the action finishes.
• Task<IActionResult> is an asynchronous return type used when the action includes non-

blocking operations such as database queries or API calls.
• It enables the method to run asynchronously and return once the operation is

complete.

11. Explain the difference between IEnumerable and IQueryable.

IEnumerable:

• Works with in-memory collections like Lists and Arrays.
• Loads all data into memory first, then applies filters.
• Best suited for small collections already loaded in memory.

IQueryable:

• Works with databases via ORMs like Entity Framework or LINQ to SQL.
• Applies filters at the database level before fetching.
• Best suited for large datasets and efficient querying.

Page 37 of 42

12. Explain the difference between Filters and Middleware.

Middleware:

• Runs for every request in the pipeline.
• Used for global concerns like authentication, logging, and exception handling.
• Registered in Program.cs using app.UseMiddleware<>().

Filters:

• Execute inside the API pipeline, at the controller or action level.
• Used for cross-cutting concerns like validation, authorization, and caching.
• Applied using attributes like [Authorize], [ValidateModel] or globally in AddControllers().

Summary:

• Middleware runs for all HTTP requests.
• Filters apply specifically to controller actions in the Web API.

13. Explain the difference between Lazy Loading and Eager Loading.

Lazy Loading:

• Loads related data only when accessed.
• Improves initial performance but may cause multiple database calls.
• Use Case: Load customer info first, then fetch orders only when needed (e.g., detailed

view).

Eager Loading:

• Loads related data upfront with the main entity.
• Reduces number of database queries, but might load unnecessary data.
• Use Case: Load customer and order details together (e.g., admin dashboard showing

order summary).

Summary:

• Lazy Loading = fetch on-demand.
• Eager Loading = fetch everything upfront.

Page 38 of 42

Angular Interview Questions

1. What is the difference between Angular and AngularJS?

a. AngularJS:

• Supports JavaScript
• Follows MVC (Model View Controller) architecture
• Does not have CLI
• Does not use Dependency Injection
• Slower compared to modern frameworks

b. Angular:

• Supports TypeScript and JavaScript
• Uses Component-based architecture
• Comes with a powerful CLI
• Uses Dependency Injection
• Faster and optimized for performance

2. What is Angular Expression?

• Used in templates to bind data between the component and the view.
• Enables communication between TypeScript and HTML.

Data Binding Types:

• String Interpolation → {{ data }}
• Property Binding → [property]="data"
• Event Binding → (event)="expression"
• Two-way Binding → [(ngModel)]="data"

Page 39 of 42

3. What is CanActivate and AuthGuard in Angular?

• Used to secure routes based on authentication and authorization.

Details:

• CanActivate: An interface that determines whether a route can be activated.
• AuthGuard: A service that implements CanActivate, contains logic to allow or deny

access.

Let’s look at the example

4. What is Eager Loading and Lazy Loading in Angular?

How to implement Lazy Loading?

Eager Loading:

• Loads all modules at application startup.
• Increases initial load time.
• Ideal for small apps or core modules.
• Modules are imported directly in app.module.ts.

Lazy Loading:

• Loads modules only when needed.
• Improves performance by loading on demand.
• Ideal for large applications.
• Uses loadChildren in app-routing.module.ts.

Let’s look at the example of how to implement Lazy Loading

Page 40 of 42

5. What is a Service in Angular?

• Services are used to share data, logic, or functions across multiple components.
• They help centralize business logic and API calls.

Key points:

• A service is a class decorated with @Injectable.
• Injected into components using dependency injection.
• Example use: A service fetches user data and shares it across components.

6. What are Directives in Angular?

• Directives extend HTML behavior and allow dynamic DOM manipulation.

Types of Directives:

• Component Directives: Special directives that have an HTML template.
• Structural Directives: Change structure by adding/removing elements

Examples: *ngIf, *ngFor, *ngSwitch
• Attribute Directives: Change appearance or behavior of elements

Examples: ngClass, ngStyle

7. What is a Pipe in Angular?

• A Pipe transforms data in templates before displaying it.

Common Usage:

• Formatting dates, numbers, strings, and currency

Types:

a. Pure Pipes:

• Executed only when input changes
• Examples: DatePipe, UpperCasePipe, CurrencyPipe

b. Impure Pipes:

• Executed on every change detection cycle
• Useful for mutable data like dynamic filtering/sorting

Page 41 of 42

8. What are the ways to pass data in Angular?

Between components:

• @Input: From parent → child
• @Output: From child → parent
• Shared Service: For sibling components
• #Var: Access child component properties/methods in the template
• @ViewChild: Access child properties/methods in TypeScript

9. What is Microservices?

• Microservices is an architectural style where apps are split into independent, modular
services.

• Each service handles a specific business function and communicates via APIs.
• Improves:

o Scalability
o Flexibility
o Maintainability

Tools Used:

• Docker
• Kubernetes
• API Gateway

Page 42 of 42

Thank you!

Hope you liked our above interview questions and we

wish you all the best for your next interview.

In case of any doubts or clarification, please reach out
to us on our email id – stackbytes08@gmail.com or our

social media pages.

mailto:stackbytes08@gmail.com

